Deep Learning for Semantic Segmentation of
CARLA Simulator Data

ECE 285 course project

Dhruv Talwar
Electrical and Computer Engineering
A59015745
Contribution: DeepLabv3+(Resnetl01 & Resnet50)

Abstract—The development of autonomous driving has gained
significant attention in recent years, and it requires the ability
to accurately perceive and interpret the surrounding environ-
ment. Semantic segmentation and depth estimation are crucial
components in autonomous driving, enabling the vehicle to
understand the structure and layout of the scene and make
informed decisions. In this project, we propose to investigate
deep learning techniques for semantic segmentation using data
from the CARLA simulator data for self-driving cars. We will
explore state-of-the-art deep learning models utilizing encoder-
decoder architectures, such as U-NET and DeeplabV3 to develop
robust and accurate models. We will also implement and compare
different flavors of these models and evaluate the performance
of the proposed models using standard metrics, such as dice
score and intersection over union (IoU). The results of this
project will provide insights into the effectiveness of deep learning
techniques for semantic segmentation in CARLA simulator data
for self-driving cars. Ultimately, this project aims to contribute to
the development of safer and more reliable autonomous driving
systems.

I. INTRODUCTION

The rise of autonomous driving in recent years has placed
significant emphasis on the need for accurate perception and
interpretation of the surrounding environment. To achieve
this, there is a growing demand for techniques that are less
reliant on hardware and can maintain a high frames-per-second
(FPS) rate for real-time processing. Semantic segmentation is
critical components in the development of autonomous driving
systems, as they allow vehicles to accurately comprehend
the scene’s layout and structure, enabling informed decision-
making.

A. Objective

The main aim of the project is to analyze and compare the
segmentation outcomes achieved using both the U-Net and
DeepLabV3 models. Additionally, modifications have been
made to these conventional networks, and a comparative
analysis has been conducted.

II. DATASET

The CARLA Semantic Segmentation Dataset is a valuable
resource for developing and evaluating deep learning algo-
rithms in the field of autonomous driving and computer vision.
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This dataset is specifically designed for semantic segmentation
tasks, which involve assigning pixel-level labels to different
objects and regions in images.

The dataset is generated using the CARLA simulator, a pop-
ular open-source platform for autonomous driving research.
CARLA provides a realistic virtual environment that simulates
various urban driving scenarios with diverse lighting condi-
tions, weather conditions, and traffic situations. This makes it
an excellent tool for training and testing semantic segmentation
models.

The CARLA Semantic Segmentation Dataset[1] consists of
5000 of 800x600 resolution images, each accompanied by
corresponding pixel-level labels. The labels provide detailed
information about different objects and classes present in
the scene, such as Vehicles (e.g., cars, trucks, motorcycles),
Pedestrians, Cyclists, Traffic signs and signals, Buildings and
structures Vegetation and trees, Roads and lanes Sidewalks
and curbs, Sky and background This level of annotation
enables researchers to develop robust algorithms for scene
understanding and perception in autonomous driving systems.
We used 4000 images for training and kept 1000 for testing
purposes.

A custom dataloader was built for the CARLA dataset.
It played a vital role in this project by efficiently handling
the CARLA dataset, which comprised RGB images and seg-
mented masks for 23 different classes. The custom dataloader,
performed several key functions. Firstly, it loaded the image
and mask filenames from the specified directories, making
them accessible for further processing. Secondly, it provided
a way to retrieve the length of the dataset and individual
samples. Each sample was loaded using OpenCV and stored as
a dictionary containing the image and its corresponding mask.
Additionally, the dataloader applied optional transformations
to the images and masks, such as resizing and conversion to
tensors.

By utilizing this custom dataloader, the project efficiently
handles the CARLA dataset. It enables the application of
transformations to the data and facilitates the training and
evaluation of deep learning models, such as UNet, UNet
with attention, Deeplabv3 with ResNet101, and Deeplabv3
with ResNet50 backbones. The dataloader ensures that the
models receive properly preprocessed batches of data, which



in turn contributes to the development of accurate and robust
segmentation models for the 23 classes in the CARLA dataset.

III. ARCHITECTURE
A. U-Net

U-Net architecture [2][3] utilizes encoder decoder to seg-
ment the image. The architecture is given in Figure 1 and
explained below:

Encoder:

The input image is passed through a series of convolutional
layers, each followed by a rectified linear unit (ReLU) activa-
tion function and max-pooling operation. This downsampling
process progressively reduces the spatial dimensions of the
input while increasing the number of feature channels. As
the encoder path proceeds, the network learns to capture and
encode both low-level and high-level features.

Bridge:

At the bottom of the U-Net, there is a bridge that connects
the encoder and decoder paths. It consists of additional con-
volutional layers that help in the transition from the encoding
to the decoding stage.

Decoder Path:

The decoder path performs upsampling operations to grad-
ually reconstruct the spatial information lost during downsam-
pling. Each upsampling step is performed by a combination
of upsampling (e.g., bilinear interpolation) and convolutional
layers. Skip connections are introduced between corresponding
encoder and decoder layers to enable the flow of high-
resolution features. The skip connections concatenate the
feature maps from the encoder path with the upsampled feature
maps in the decoder path. By incorporating skip connections,
the U-Net architecture allows for fine-grained localization and
better preservation of spatial details.

Output:

The final layer of the decoder path typically consists of
a Ix1 convolutional layer followed by a suitable activation
function, such as the sigmoid function. This produces an
output map with the same spatial dimensions as the input
image, where each pixel represents the probability of be-
longing to a particular class or category. During training, the
network is optimized using a suitable loss function, such as
the Dice loss or binary cross-entropy, to match the predicted
segmentation mask with the ground truth. The U-Net architec-
ture’s distinctive feature is the combination of the contracting
path (encoder) and the expansive path (decoder) with skip
connections, enabling it to leverage both local and global
context while preserving fine-grained details. This makes it
particularly effective for tasks like image segmentation, where
precise localization and segmentation accuracy are crucial.

Since its introduction, the U-Net architecture has inspired
numerous variants and adaptations to cater to specific domain
requirements and challenges, further enhancing its versatility
and applicability in a wide range of image analysis tasks.

Figure 1 gives a representation of the U-Net model.
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Fig. 1. U-Net Architecture

In addition to its original design, the U-Net architecture
has been further improved with the integration of attention
mechanisms. Attention U-Net [4] extends the standard U-Net
by incorporating attention gates, which dynamically weigh
the importance of different spatial locations during the infor-
mation flow. Attention gates selectively amplify or suppress
features based on their relevance to the final segmentation.
This mechanism allows the network to focus on the most
informative regions, enhancing its ability to capture fine details
and intricate structures while reducing the influence of irrele-
vant or noisy information. By adaptively attending to relevant
image regions, the attention U-Net achieves more precise
and accurate segmentation results, especially in challenging
scenarios with complex backgrounds or class imbalance. The
attention mechanism in the U-Net architecture contributes to
improved localization and segmentation performance, making
it a powerful tool for various image analysis tasks.

B. DeepLabv3+

DeepLabv3+ [5][6] is a network architecture designed for
semantic segmentation , which combines an encoder-decoder
structure with Atrous Convolution and Atrous Spatial Pyramid
Pooling (ASPP) techniques.

Atrous convolution effectively controls the receptive field
by introducing a rate parameter. It convolves the input feature
map (z) with a filter (w), and each location (z) in the output
(y) is computed using a generalized form of atrous convolution
described by the following equation:

ylil = ali+r - klw[k]
k

Unlike regular convolutions, atrous convolution enables
information retrieval at multiple scales by employing multiple
atrous convolution layers on the image.

ASPP in DeepLabv3+[7] captures multi-scale information
effectively. It includes one 1 x 1 convolution and three 3 x 3
convolutions with dilation rates of 6, 12, and 18 respectively.
ASPP also incorporates image-level features through image



pooling. The resulting features from these branches are con-
catenated and further processed by a 1 x 1 convolution.

DeepLabv3 serves as an encoder, extracting valuable fea-
tures at arbitrary resolutions. ASPP enables the exploration
of convolutional features at different scales, thanks to the
diverse dilation rates. As a result, the output feature map of
the encoder networks, which typically has 256 channels and
is 32 times smaller than the input image resolution, contains
rich semantic information.

The rich encoded features from the encoder networks
undergo upsampling by a factor of 4 wusing bilinear
interpolation. They are then combined with lower-level
features obtained from a backbone network of the same
shape. To prevent the lower-level features from overpowering
the encoded features, a 1 x 1 convolution is applied to reduce
their channel dimensions. After concatenation, the combined
features undergo a series of 3 x 3 convolutions and are finally
upsampled by a factor of 4 again using bilinear interpolation.

Figure 2 gives a representation of the Deeplabv3 model.

1) Model Backbone: 1In our project, we employed
ResNet-50 and ResNet-101, two state-of-the-art Deep
Convolutional Neural Network (DCNN) based backbone
network architectures. These backbone networks extract
high-level features from images and perform downsampling.
They consist of various components such as convolution,
pooling, and activation functions, enabling effective feature
extraction.

The Residual Network (ResNet) has proven to be effective
in training deeper networks by introducing identity shortcut
connections that alleviate the vanishing gradient problem.
With ResNet, it is possible to create deep network versions,
such as ResNet-50 and ResNet-101, which have 50 and 101
layers respectively, allowing for the extraction of advanced
features.

In this project, we utilized pre-trained models, specifically
ResNet-50 and ResNet-101, with ’Imagenet’ weights.
Initially, a deep neural network-based model was pre-trained
to extract generalized features from different layers. These
features were then utilized in the encoder and decoder of
the DeepLab architecture, based on their depth, to enhance
the method’s performance. Finally, our proposed model
underwent fine-tuning on the segmentation dataset using
augmentation techniques to mitigate overfitting.

In our implementation, to adapt the model for the specific
task, a DeepLabHead with an input size of 2048 and the
desired output channel size was added as the classifier.
Notably, a Tanh activation function was introduced after the
last convolution layer. This modified architecture allows the
model to generate predictions with 3 output channels.

Fig. 2. DeeplabV3+ Architecture

IV. RESULTS

In this section, we present the evaluation metrics used to
assess the performance of our segmentation model: accuracy,
Intersection over Union (IOU), and Dice score. These metrics
provide valuable insights into the quality and effectiveness of
the model’s predictions.

A. Evaluation Metrics

We use the following metrics to evaluate the performance
of our segmentation model:

o Accuracy: Accuracy measures the percentage of correctly
classified pixels in the predicted masks.

o Intersection over Union (IOU): IOU, also known as
the Jaccard index, quantifies the overlap between the
predicted mask and the ground truth mask.

o Dice Score: The Dice score measures the similarity
between two binary masks.

These metrics allow us to assess different aspects of the
model’s performance and provide a comprehensive evaluation
of its segmentation capabilities.

1) Accuracy: Accuracy measures the percentage of cor-
rectly classified pixels in the predicted masks. It is calculated
by dividing the number of correctly classified pixels by the
total number of pixels in the image.

Accuracy — Number of correctly clas§iﬁed pixels 0
Total number of pixels

2) Intersection over Union (IOU): 10U, also known as the
Jaccard index, quantifies the overlap between the predicted
mask and the ground truth mask. It is calculated as the ratio
of the intersection to the union of the two masks.

10U — Intersstction @)
Union

where the intersection represents the number of pixels that
are correctly classified as foreground in both masks, and the
union represents the total number of pixels that are classified
as foreground in either mask.



3) Dice Score: The Dice score measures the similarity
between two binary masks. It is calculated as twice the
intersection divided by the sum of pixels in both masks.

2 x Intersection

Di = :
16€ SCOre = S im of pixels in both masks ¥

The Dice score ranges from 0 to 1, where 1 indicates a
perfect match between the predicted and ground truth masks.

B. UNET and Attention

In this section, we present the results obtained from our
segmentation models based on the U-Net architecture with and
without using Attention layer. We provide a comparison of the
models’ performance, discuss the hyperparameters used, and
present qualitative and quantitative evaluations.

1) Hyperparameters: Table III summarizes the hyperpa-
rameters used for training the U-Net model.

TABLE I
HYPERPARAMETERS
Hyperparameter Value

Learning Rate 0.00001
Batch Size 32
Number of Epochs 10

Optimizer Adam

The models were trained using the Adam optimizer with a
learning rate of 0.00001. The batch size was set to 32, and the
models were trained for 10 epochs.

2) Training and Evaluation: The U-Net model with and
without attentions were trained on a dataset of 5000 images
with corresponding ground truth masks. The dataset was split
into a training set and a separate test set. During training, data
augmentation techniques such as random flipping and rotation
were applied to increase the variability of the training samples.

The models were trained using the cross-entropy loss func-
tion and evaluated using three evaluation metrics: accuracy,
Intersection over Union (IOU), and Dice score. The accuracy
measures the percentage of correctly classified pixels, while
the IOU and Dice score quantify the overlap between the
predicted and ground truth masks.

3) Results and Comparison: Table II provides a comparison
of the performance of the U-Net with and without Attention.
The accuracy model with attention model is high beacuse
it introduces attention mechanisms that enable the model to
selectively focus on informative regions while suppressing
irrelevant or noisy information. This attention mechanism
allows the network to better understand the contextual rela-
tionships between different pixels and capture more detailed
information. In contrast, the original UNet architecture lacks
this explicit attention mechanism, resulting in a limited ability
to effectively capture complex contextual information.

TABLE II
MODEL COMPARISON
Model Accuracy % | IOU | Dice Score
U-Net 75.73 0.7 0.75
U-Net + Attention 91.2 0.8 0.87
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Fig. 3. UNet + Attention

C. Deeplabv3+

In this section, we present the results obtained from our
segmentation models based on the Deeplabv3 architecture
using ResNetl101 and ResNet50 as backbone networks. We
provide a comparison of the models’ performance, discuss the
hyperparameters used, and present qualitative and quantitative
evaluations.

1) Hyperparameters: Table III summarizes the hyperpa-
rameters used for training the Deeplabv3 models.

TABLE 111
HYPERPARAMETERS
Hyperparameter Value
Backbone Network | ResNetl01 / ResNet50
Learning Rate 0.00001
Batch Size 16
Number of Epochs 20
Optimizer Adam

The models were trained using the Adam optimizer with
a learning rate of 0.00001 and weight decay of 0.0001. The
batch size was set to 16, and the models were trained for 20
epochs.

2) Training and Evaluation: The Deeplabv3 models with
ResNetl01 and ResNet50 backbones were trained on a
dataset of 5000 images with corresponding ground truth
masks. The dataset was split into a training set and a separate
test set. During training, data augmentation techniques such
as random flipping and rotation were applied to increase the
variability of the training samples. Fig 3 shows the plot of
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The models were trained using the cross-entropy loss func-
tion and evaluated using three evaluation metrics: accuracy,
Intersection over Union (IOU), and Dice score. The accuracy
measures the percentage of correctly classified pixels, while
the IOU and Dice score quantify the overlap between the
predicted and ground truth masks.

3) Results and Comparison: We can observe the training
versus validation accuracy graphs with respect to the number
of epochs for the ResNet101 model.
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Fig. 6. DeeplabV3+ with ResNet101

In the training versus validation loss graphs, it is observed
that the training loss decreases steadily over time, indicating
that the model is effectively learning from the training data.
However, the validation loss shows intermittent jumps to
higher levels before gradually decreasing. These sudden
jumps in validation loss may indicate instances of overfitting,
where the model becomes too specialized to the training data
and performs poorly on unseen data.

By By initializing my model with pre-trained weights from
ResNet-101, we can give a good starting point for your training
process. The pre-trained weights already capture low-level
features such as edges, textures, and basic shapes, allowing
the model to focus on learning higher-level features.

Table IV provides a comparison of the performance of the
Deeplabv3 models based on ResNet101 and ResNet50.

TABLE IV
MODEL COMPARISON

Model Accuracy in % | IOU | Dice Score
ResNet101 87.23 0.75 0.85
ResNet50 78.77 0.64 0.78

From the results, we observe that both models achieved high
accuracy, with the ResNet101 model achieving an accuracy of
0.87 and the ResNet50 model achieving an accuracy of 0.78.
However, the ResNet101 model outperformed the ResNet50
model in terms of IOU and Dice score, indicating a better
overlap and similarity between the predicted and ground truth
masks.



Qualitative evaluation, Fig 7 and 8 of the models’ predic-

tions showed that the ResNet101 model produced smoother
and more accurate segmentation masks compared to the
ResNet50 model, which exhibited some pixelation and incon-
sistencies in certain regions.
This the higher performance of the ResNet101 backbone can
be attributed to its deeper architecture and increased capacity
to capture more complex features. The model with ResNet101
demonstrated improved accuracy, IOU, and Dice scores com-
pared to the model with ResNet50, indicating its ability to
better capture the segmentation boundaries and produce more
accurate masks.

Our results demonstrate promising performance, as evi-
denced by high scores in metrics such as accuracy, 10U,
and Dice coefficient. However, upon closer inspection of the
generated masks, we observed a potential limitation in the
qualitative aspect. Specifically, when encountering complex
scenes with cars on the road, the predicted masks exhibited
a degree of blurriness and failed to define the edges sharply.
This issue became particularly noticeable in regions where fine
details and intricate structures were present. It is important to
note that our experiments were conducted for a relatively short
training duration of 20 epochs, which could have limited the
model’s ability to capture subtle nuances and intricate details.
Addressing this challenge may require further experimentation
with prolonged training, the exploration of additional data
augmentation techniques, or the adoption of more advanced
architectural modifications.

Orlgmnl Image

2 Rt
-!
el ™

Fig. 7. DeeplabV3+ with ResNet101

D. Inter Model Comparison

The comparison between U-Net and DeeplabV3 provides
valuable insights into their respective performance in image
segmentation tasks. U-Net with attention, achieving an
accuracy of 91.2, IOU (Intersection over Union) of 0.8, and
Dice score of 0.82, demonstrates good overall performance.

Original Image

Fig. 8. DeeplabV3+ with ResNet50

The U-Net architecture incorporates skip connections,
enabling the fusion of high-resolution features from the
encoder with upsampled features from the decoder. This
design allows U-Net to capture fine details and produce
masks with sharp boundaries.

However, U-Net has its limitations, particularly in detecting
small objects and distant details. In our experiments, we
observed that U-Net struggled to identify cars and small
trees in the predicted masks. The downsampling process in
U-Net reduces the spatial dimensions of the input image,
potentially leading to the loss of fine-grained details.
Although the subsequent upsampling in the decoder path
attempts to reconstruct the lost spatial information, it may
still face challenges with small objects occupying only a
few pixels or distant details that are not well-preserved
during downsampling. Furthermore, U-Net’s receptive field,
representing the effective area that influences each pixel’s
prediction, may not be large enough to capture small objects
or distant details accurately.

On the other hand, DeeplabV3 takes a different approach to

image segmentation. With an accuracy of 87.2, IOU of 0.75,
and Dice score of 0.85, DeeplabV3 demonstrates competitive
performance. It utilizes atrous convolutions and a spatial
pyramid pooling module to capture contextual information at
multiple scales.
The predicted masks from DeeplabV3 may tend to be
blurry, but the model exhibits the ability to detect cars and
small, faraway trees to some extent. Despite the lack of
sharp boundaries, DeeplabV3 effectively captures important
semantic features in the image. By leveraging a broader
contextual understanding of the scene, DeeplabV3 excels at
detecting objects of interest, even if the boundaries appear
less precise.



In summary, U-Net excels in producing masks with precise
boundaries and preserving fine details, making it well-suited
for applications where accurate localization is crucial, such
as medical image segmentation. However, U-Net may face
challenges in detecting small objects and distant details. On
the other hand, DeeplabV3 sacrifices boundary sharpness
but offers a broader contextual understanding of the scene.
It can effectively capture important semantic features and
detect objects of interest, even if the boundaries appear blurry.

It is important to note that further experimentation, such
as hyperparameter tuning and longer training durations,
could potentially improve the performance of both models
and address some of their limitations. Exploring advanced
variants of U-Net, such as U-Net with attention or other
state-of-the-art architectures, may also provide promising
avenues for enhancing performance in detecting small objects
and distant details.

V. CONCLUSION

In this project, we investigated deep learning techniques for
semantic segmentation in the context of autonomous driving
using the CARLA simulator data. We explored two state-
of-the-art models, U-Net and DeepLabv3+, and evaluated
their performance using standard metrics such as accuracy,
Intersection over Union (IOU), and Dice score.

The U-Net architecture, with its encoder-decoder structure
and skip connections, proved to be effective in capturing both
low-level and high-level features for accurate segmentation.
We trained the U-Net model on the CARLA dataset and
achieved promising results in terms of accuracy and IOU.
The model showed potential for scene understanding and
perception in autonomous driving systems.

DeepLabv3+ offered an alternative approach with its
encoder-decoder structure, Atrous Convolution, and Atrous
Spatial Pyramid Pooling (ASPP) techniques. By incorporating
multi-scale information and image-level features, DeepLabv3+
demonstrated robust performance in semantic segmentation
tasks. We employed two variants of DeepLabv3+, utilizing
ResNet-50 and ResNet-101 as backbone networks. Both mod-
els achieved competitive results, with ResNet-101 outperform-
ing ResNet-50. Ultimately U-net with attention outperforming
all in terms of accuracy, IOU score and Dice score.

VI. FURTHER WORK

Future work can be conducted to further improve the per-
formance of the models and explore additional enhancements.
Some potential avenues for future research include:

Data augmentation techniques: Investigate the effective-
ness of additional data augmentation techniques, such as ran-
dom scaling, cropping, and color transformations, to increase
the model’s ability to generalize to different scenarios and
lighting conditions.

Model ensembling: Explore the use of model ensembling
techniques, such as averaging predictions from multiple mod-
els or using a weighted combination of their outputs, to
improve the overall segmentation performance.

Attention mechanisms: Investigate the integration of atten-
tion mechanisms into the U-Net architecture to enhance the
model’s focus on informative regions and improve segmenta-
tion accuracy.

Real-world evaluation: Extend the evaluation of the models
to real-world datasets and scenarios, considering factors such
as varying weather conditions, diverse road environments,
and complex traffic situations. This would provide a more
comprehensive assessment of the models’ robustness and
generalization capabilities.

Depth estimation: Further explore depth estimation tech-
niques in conjunction with semantic segmentation to enable
more comprehensive scene understanding. Investigate the fu-
sion of depth information with RGB images to enhance
perception capabilities for autonomous driving.

By addressing these areas of future work, we can
advance the development of accurate and reliable semantic
segmentation and depth estimation models for autonomous
driving systems, contributing to the realization of safer and
more efficient self-driving vehicles.
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